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Lecture 7 Outline

e Ground source thermal
* Biomass and biofuels

* Negative emissions
* Enhanced weathering
e Afforestation and reforestation see lectures 3&4
e Ocean-based removal
e Carbon capture and storage
* Direct air capture

e Net Zero Emissions Summary [separate document]



Ground Source Geothermal for
Heating and Cooling



The ground is a renewable energy
resource. ltisreplenished by the
energy from the air.



Ground source heat pump

T=55F

“Geothermal”






Ground-source (geothermal)
heat pump in heating mode

WATER | REFRIGERANT
HEAT EXCHANGER
(EVAPORATOR)

S

SYSTEM
PUMP

P e

GROUND
LOSES
LATENT
HEAT

i

REFRIGERANT
GAINS

LATENT

HEAT

DHW / REFRIGERANT

HEAT EXCHANGER
(DE-SUPERHEATER) ~ ™

.

DHW TANK

EXPANSION VALVE

BYPASS VALVE

VALVE

'
k> ‘

COMPRESSOR

REFRIGERANT | AIR
HEAT EXCHANGER
{CONDENSER)

HEfRiwERAawE

Ul

Ewedee

S

REFRIGERANT LOOP

_| HOT VAPOR

DOMESTIC HOT
_I WATER (DHW)

GROUND LOOP
- ANTIFREEZE -
WATER SOLN

hot air
to home

From Geo4VA project, Virginia Department of Mines, Minerals, and Energy



Ground-source (geothermal)
heat pump in cooling mode
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Ground source heat pump

COP=2.5 - | —~pq COP = 4

L. __ *ar ,

GE heat pump preheat

water heater tank Geal pmp



What is COP?
Coefficient of Performance

Heat from ground Heat into house
Electricity into heat pump

Heat into house Heat from ground
=1.0+

COP= =
Electricity into heat pump Electricity into heat pump

NB COP is greater than 1. Heat from ground is “free.” Electricity cost money.



The Hole Deal, Inc.
Directional Boring & Geothermal
Goodfield, IL




507 W. lllinois Urbana, IL




Biofuels and Biomass



Outline

e Primary energy sources: historical and current
e Biomass general considerations

e Renewable fuel standard

e Corn and sugarcane ethanol

e Cellulosic ethanol

e Forest and crop residue

e Biomass and biofuels summary



Historical Primary Energy Sources
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Biomass in General



Biomass Schematic

~1% conversion to biomass
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Biofuels Production Processes

.
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Products

Bio-Ethanol

Bio-Butanol

&

1st, 2nd and 3" generation of oil substitutes

Feedstocks Process Technologies

1st Grain Crops

~ Fermentation
1t Softwoods

- Gasification
1st Animal Wastes

- Liquefaction
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- Pyrolysis
ond Stover
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2nd Energy Crops
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Gaseous Product
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Liquid Product btg ’

biomass technology group -‘

\

Afterburner
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See http://www.btgworld.com/en/rtd/technologies/fast-pyrolysis




Biomass and Biofuels Comments

e Land area requirement can be large since power density
is small.

* Crops may require irrigation.
e Collection of biomass limited by transportation cost.

 Competition for arable exists between food and fuel
production.

e Energy is stored and available at harvest.

e Conversion to oil or natural gas substitute can be energy
Intensive.

* Improvement of plant productivity and conversion
efficiency is a very active research field.



Arable and Forest Land of the World

&

B 1 ainly productive crop, pasture B Mostly suitable for forest B Mostly suitable for grazing,
and forest land I Mainly suitable for forest marginal for cereals

1 Mainly suitable for crops if tree crops or permanent Fredaminantly unproductive
improved pastures land




U.S. Biomass Resource

Total Biomass
Resources in the
United States

(Thousand metric
tons per Year)

aeove 500 [}

250500 [}
1so250 [l
100-150 [
so-100 [

LESS THAN 50

It's everywhere
The U.S. is home to
more than one billion tons
of available biomass that
can be converted to 80-100
billion gallons of ethanol.

TMETRIC TON = 1.1 TONS; SOURCE: NREL

one ton of biomass could yield 80 - 100 gallons of ethanol
80 - 100 billion gallons of ethanol 6.8 - 8.4 quads



Renewable Fuel Standard
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Sugarcane and cellulosic ethanol are favored by the
RFS2 and LCFS but must compete with corn ethanol
for blending capacity.

D]

Fuel: Comn ethanol

« Currently, most ethanol blended is (inexpensive) corn ethanol
« Counts as Conventional biofuel

e uel: Sugarcane ethanol (mainly from Brazil)

= Not cellulosic, but does count as an RFS Advanced biofuel
« Competes for limited ethanol blending capacity

s Fuel- Biomass-based diesel D4

« Not cellulosic, but does count as an RFS Advanced biofuel

Fuel: Cellulosic biofuels

= Ethanol or drop-in fuel
« |f ethanol, must compete for limited ethanol blending capacity

« Production of biochemicals or electricity may displace cellulosic biofuel
production




Consumption of Advanced biofuels
Billion gallons ethanol equivalent
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Source: Annual Energy QOutlook 2013 Early Release



Ethanol Fuel Blends

e £10 — standard U.S. blend
e £15 — NASCAR Sunoco E15
e £25 — standard Brazil blend

e Flex-fuel vehicle —up to E85
e Indy — E98



Corn, Sugarcane and Cellulosic Ethanol



Ethanol Production Schemes

Cellulose Process

Corn Process

Sugar Cane Process

Ferment- L . .
ation Distillation

Starch Co-Product
Corn Conversion Recovery

(Cook or Animal Feed
Kernels Enzymatic Chemicals
Hydrolysis)

Cellulose
Cellulose Conversion

Cellulose Pretreatment

Hydrolysis

e Miscanthus

» Switchgrass

* Forest Residues
* Ag Residues

* Wood Chips



Very Basic Chemistry

6CO, +6H.0 + light - C.H,.O, + 60,

photosynthesis

C.H,,0, > +2C,H.OH +2CO, + heat

fermentation

C,H.OH +30, - 2CO, +3H.0 + heat

combustion



Sugar and Starch

CH,OH
CH,OH
H Oy O. H
H
OH H o H HO
HO CH,OH
H OH OH H

Sucrose: a disaccharide of glucose (left) and fructose (right)

CH,OH CH,OH CH,OH
o) o) o)
OH KOH KOH
OH O O OH
OH | OH |, 4 600 OH

Starch: a polysaccharide of glucose



novozymes

Rethink Tomonngw

Cell wall model

Core lignin

Non core lignin; -85

n
i
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Lignin
Cellulose
Hemi-cellulose

From: o ) i
1. Bidlack, M. Malone and R. Benson. Lignin zljll-::ll:}se :::i“:ll;ﬂ
Okls. Acad. Sci., 1992, Vol. 72.

cross link



Lignocellulosic Feec

stock Harvest Index

Feedstock | Cellulose | Hemicellulose | Lignin Ash | Other HI

Hardwoods | 39-50% 18-28% 15- [0.3-1% | 3-6% |0.65-0.82
28%

Softwoods | 41-57% 8-12% 24- 0.1- 5-9% | 0.63-0.69
27 % 0.4%

Miscanthus | 43-48% 23-27% 9-22% 1.7- ? 0.78-0.89

2 1%




Basic cellulose structure

Glucose "™
(C6 sugar) H

novozymes

Rethink Tamaong

L



novozymes

Rethink Tomaerow

Basic hemicellulose structure

feruloyl esterase

o -L-arabinofuranosidase H
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acetyl xylan esterase endo-1,4-B-xylanase (CS sugar) - glucuronidase
ﬂ—wbaidaae



Sugarcane Ethanol



Sugarcane Productivity




Brazilian Sugarcane Locations

LOCATION

* Notinthe Amazon

« Bestland for cane:

- — Northeast coast
: * Oldest (XVI century)
\ — Southeast

55 ton/ha

* highest productivity

— Centralwest

South-Central region _ )
=82 tun!ha * Mmain expa Nsion ared

represents 87% of
sugarcane harvest
h— .-r"-'-'-#

22 million acres in sugarcane, 500 million acres in cattle



Corn, Sugarcane, Grass Comparison

2000
| 800
5400 .
3,100 3.100
' 2 400
I 540

Etancl de cana  Etanolde  Eranolde cana Etamol de Etamol de  Etancl de tripe  Etanol de
beterraba milha mandioea felubone®

T.000

z

:

Litros por hectare
g 8

:

;

o

International Energy Agency (2005)

Sugarcane: 39 tonsha (dry stalks and trash)
Miscanthus 29.6 torvha
Switchgrass 10.4 tonvha

Maize 17.6 t./ha (total grain plus stover)
(Heaton et al., 2008).



Cellulosic Ethanol



2016 Survey of Biorefinery Projects by
Technology and Feedstock Categories

U.S. Biorefineries In.tematlnflal
Biorefineries
Pilot Demonstration Commercial Commercial
Non-Starch Alcohol (BC) from Cellulose 7 (3) 7 (3) 17 (5) 11 (6)
Non-Starch Alcohol (TC) from Cellulose 2(2) 0 1 (0) 2(1)
Non-Starch Alcohol (TC/BC) from Cellulose I (0) 0 | (0) 0
Non-Starch Alcohol from Algae 2(2) (1) 0 0
Total Non-Starch Alcohols 12 (7) 8 (4) 19 (3) 13 (7)
Renewable HC (TC) from Cellulose 15 (10) 7(2) 4 (0) 1 (0)
Renewable HC (TC) from Fats, Qils, and Greases (1) 2() 9 (4) 11 (10)
Renewable HC (TC) from Algae 5(1) 0 0 0
Renewable HC (BC) from Cellulose I (0) 2(2) 0 0
Total Renewable HC 22 (12) Il (5) 13 (4) 12 (10)
Cellulosic Sugars 2(2) 3(2) 0 0
Oils (pyrolysis) 32 1 (0) 1(0) 5(3)
Oils (algae) I (1) (1) 0 I (1)
Syngas Zfrom pyrolysis) I (1) 0 0 0
Total Intermediate Products 7 (6) 5(3) 1 (0) 6 (4)
Grand Total 41 (25) 24 (12) 33(9) 31 (21)

Operating projects are in ( ). BC = biochemical, HC = hydrocarbons,

TC = thermochemical.



Miscanthus at University of lllinois
Experimental Plot
|

From D. MacKay Sustainable Energy without the Hot Air, Figure 6.10



Beta-Renewables Cellulosic Ethanol Refinery
Crescentino, Italy




biofuels
Nntermnationa

November 1, 2017
World’s 'first' commercial second-

generation bioethanol facility 'shuts down'
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Advanced Biofuels

Emmetsburg, 1A
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Status of Cellulosic Ethanol in U.S.

= Uperatio
Abengoa Hugoton, KS Biochemical Crop Residues 23 201 géﬂ?d "
Ace Ethanol Com Kernel
(Sweetwater Energy, Stanley, WI Biochemical 35 [2017]
Inc.) Cellulose
Beta Renewables : - : Dedicated
Ine. Clinton, NC Biochemical Energy Crops 20 [2017]
. i Dedicated
Canergy Brawley, CA Biochemical Energy Crops 25 [2017]
DuPont Nevada, |A Biochemical Crop Residues 30 2015
Enerkem Pontotoc, MS | Thermochemical Gasification Municipal solid 10 [2020]
waste (MSW)
Front Range Energy cellulosic
(Sweetwater Energy Windsor, CO Biochemical g 36 [2017]
Inc.) ugars
INEOS New Planet Vero Beach, Hybrid
Bioenergy LLC® FL Biochemical/Thermochemical MSW 8 [2016]
Pacific Ethanol Com Kernel
(Sweetwater Energy Madera, CA Biochemical 3.6 [2017]
Cellulose
Inc.)
POET Emm?fb”rg= Biochemical Crop Residues 25 2015
Quad County Corn Galva, IA Biochemical Corn Kernel 3.8 2014
Cellulose
Boardman, - : Woody
ZeaChem OR Biochemical Biomass 22 [2017]




Argus Leader.

PART OF THE USA TODAY NETWORK
April 4, 2019
Sioux Falls-based ethanol producer Poet
awarded millions by arbitration panel




Des Moines Register

E USA TOD

November 9, 2018

DuPont sells lowa ethanol plant to German company;
it will soon make renewable natural gas




6478 Biofuel Producer Credit

Department of the Treasury - Attach to your tax return.

Internal Revenue Service > Go to www.irs.gov/FormB478 for instructions and the latest information.

OMB No. 1545-0231

2018

Attachment
Sequence No. 83

MName(s) shown on return

Identifying number

Type of Fuel

(a)
Number of Gallons
Sold or Used

(b)
Rate

(c)

Column (a) x Column (b)

1 Reserved for futureuse . . . . . . . . . . . . . 1

2 Reserved for future use

3 Biofuel producer credit from partnerships, S corporations, cooperatives, estates, and trusts (see

instructions) .

4 Add lines 2 and 3. Cooperatives, estates, and trusts, go to line 5. Partnerships and S corporations,
stop here and report this amount on Schedule K. All others, stop here and report this amount on

Form 3800, Part lll, line 4¢c

5 Amount allocated to patrons of the cooperative or beneficiaries of the estate or trust (see

instructions) .

6 Cooperatives, estates, and trusts, subtract line 5 from line 4. Report this amount on Form 3800,

Part lll, line 4c

For Paperwork Reduction Act Notice, see separate instructions.

Cat. No. 136054

Form 6478 (2018)



New Cellulosic Projects

C&en
September 30, 2018
Clariant bets big on cellulosic ethanol

Chemical maker breaks ground in Romania on $120 million waste-
straw-to-ethanol plant

llllll

September 24, 2018
Cellulosic biorefinery to break ground in North Dakota
New Energy Spirit Biomass Refinery LLC



Current Land Usage for Corn Ethanol

and Comparison to Miscanthus
e 2014 total acreage for corn: 83.1 million acres

e 2014 fraction of corn used for ethanol production: 43.7%

e 2014 acreage for corn ethanol production: 36.3 million
acres (~11% of all U.S. cropland) to produce 13.8 Ggal

 |[f miscanthus, 16.9 million acres required (~5.0% of all U.S.
cropland)

e Land required for ethanol production from miscanthus
smaller



Electricity and Heat from Forest Residue

From MacKay p. 285

Sustainable crop of woody biomass in northern

Europe can produce 0.6 W,/ m?. For 500 MW,

power plant biomass must be collected from at
least a 20 km radius.



World’s Largest Biofuel CHP Plant
Alholmens Kraft, Finland

550 MW, boiler. 240 MW,. Up to 100 MW, steam and 60 MW, district heat.
Approximately, 400,000 tonnes of biomass consumed per year..

From Organisations for the Promotion of Energy Technologies, Finland



Fuel Gathering

Procurement of the forest i Forest haulage of bales
residues is connected into Baling of forest 2

timber harvesting

On-road transportation by
log trucks

Chipping of forest residues
on read-side

b
Piling of forest
residues at stand

Forest haulage of forest residues
by forwarder

U“'rm:;;-:‘;smaﬁm Crushing of bales at the plant l “

Forest fuel supply chain from forest to the plant. VIT Energy.

In 2001 production cost of biomass for up to 80 km
transportation distance was 8.2 € / MWh (OPTE, Finland) .



Eastern lllinois University
Renewable Energy Center

Lk

o HEEEE R E Y

Fuel: biomass (wood chips), 27,000 tons per year yielding 16 MW,
Source: Gary Reed presentation at
UIUC Biorefineries Symposium, October, 2010




UIUC Abbott Power Plant

Coal and natural gas fired combined heating, cooling and power production
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Figure 3.1-4. Hourly Energy Data from UIUC Central Plants - 2008

Source: “A Study of the Utilities at the University of lllinois,”
Science Applications International Corporation, September 2009




County-level Production of Corn Stover (196 million Mg yl'1 )

L1

Mo com shover

« 50,000 dry Mghyr N
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100,000 bo 250 000 dry Mot |
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. =

Fig. 5. Annual prodoction of com stover in the United States, Valoes were derived as described in text nsing 1%95-2000 com production stalistics
lroom LISIVAL

from Graham et al., Agronomy Journal 99(2007)1



Champaign County Biomass Potential
Sufficient for Abbott?

e 2009 Champaign Cuunty lllinois B
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Abbott Power Calculation
Assume that Abbott requires 180 MW,

corn stover [t/a/y|=0.021xcorn yield [bu/a/y]
Champaign County corn production=180bu/a/y

Champaign County stover production =3.8t/a/y

energy density of corn stover =5.3 kWh / kg
Champaign County stover production =0.52W / m?

Abbott requires 330,000 tons from 86,000 acres
Abbott could be powered by Champaign County stover.



Other Possible Biomass Examples

e Oil from algae

* Municipal solid waste incineration

e Capture of methane from landfills

e Methane production from animal waste
e Biodiesel production from cooking oil

e Many others



Oil yields from various plants and microalgae
In cubic meters per hectare

Corn 0.14
Soybeans 0.45
Sunflower 0.95
Canola (Rape) 1.20
Jatropha 1.90
Palm 5.90

Microalgae (30% lipids) 59.0
Microalgae (50% lipids) 98.0
Microalgae (70% lipids) 140.0



Hard Lessons From the Great Algae Biofuel Bubble
Firms That Have Moved Away From Algal Biofuel

e Algae Floating Systems e LiveFuels

* Algenol e OriginQil (OriginClear)
* Algae Tec * PetroAlgae (Parabel)
* Algix * Phycal

e Algaelink e Pond Technologies

» Alga Technologies  Renewable Algal Energy
e Aquaflow Bionomics (NXT Fuels) e Sapphire Energy

e Aurora Biofuels e Seambiotic

* Cellana * Solix

e Global Algae Innovations e Synthetic Genomics
* GreenFuel Technologies e TerraVia (Solazyme)

* Heliae e XL Renewables



http://www.algaefloatingsystems.com/news-1.html
http://algenol.com/
http://algaetec.com.au/index.php/technology/the-algae-tec-technology
http://algix.com/products-services/algae-harvesting-platforms/
http://algaelink-bioking-scam.blogspot.com/
https://www.algatech.com/1884
http://nxtfuels.com/about-us/our-journey/
http://nxtfuels.com/about-us/our-journey/
https://www.greentechmedia.com/articles/read/algae-start-up-aurora-reorganizes-to-enter-food-market
http://cellana.com/
http://www.globalgae.com/
https://www.greentechmedia.com/articles/read/greenfuel-technologies-closing-down-4670
http://www.heliae.com/
https://www.greentechmedia.com/articles/read/livefuels-swaps-algae-for-fish-in-oil-production
http://www.originclear.com/
http://www.originclear.com/
http://www.parabel.com/
http://www.parabel.com/
https://energy.gov/nepa/downloads/ea-1829-final-environmental-assessment-and-finding-no-significant-impact
http://pondtechnologiesinc.com/media/photo-gallery/
http://www.rae-energy.com/
http://www.sapphireenergy.com/news-article/1830013-fuel-for-thought-when-two-barrels
https://www.israel21c.org/the-top-12-ways-israel-feeds-the-world/
http://www.solixalgredients.com/
http://www.businesswire.com/news/home/20170118005112/en/Synthetic-Genomics-ExxonMobil-Renew-Algae-Biofuels-Research
http://www.solazyme.com/
https://www.linkedin.com/company-beta/378051/?pathWildcard=378051

Use of biogas in Germany: development 1992-2013 7,874 MW
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Biomass and Biofuels Summary

e Significant biomass and biofuel resources both from
production and conservation

e Commitment of land required, but marginal land use
possible

e Commitment of water required, but drought resistant
cultivars exist

e Opportunities for more productive feedstocks and
more efficient conversion

e Research to go beyond ethanol promising

e Learn what termites do. Improve on what plants do.
Capture more of the sun.



Negative Emissions

* Why negative emissions?
e Carbon cycle

* Removal of CO, from Atmosphere
e Enhanced weathering
e Afforestation and reforestation lectures 3&4
e Ocean-based removal
e Carbon capture and storage
* Direct air capture

* Negative emissions summary



Negative Emissions Remove CO,
from the Atmosphere

YOUKNOW. opce Tue
WHAT THAT
ANSWER
WOULD
INVOLVE
MEAN FOR  ‘cal Ao
HUMANS?

DILBERT, T WANT YOU
TO INVENT A DEVICE
THAT CAN SCRUB 100%

OF THE CO2 OUT OF THE

100%?7 ? ?
THAT WOULD KILL
EVERY PLANT IN THE
WORLD.

ESCOTTADAMSSAYS

Inc./Dist. by Andrews McMesl

DILBERT.COM

2-11-19 2019 Scott Adama,




I'VE DEVELOPED A
SUPER —EFFICIENT
DEVICE THAT SCRUBS
CO2 OUT OF THE AIR.

ESCOTTADAMSSAYS

DILBERT.COM

BUT THE USER HAS
TO REMEMBER TO TURN
IT OFF AFTER A FEW
DAYS OR ELSE IT WILL
REMOVE TOO MUCH C02
AND DESTROY ALL
LIFE ON EARTH.

2-12-19 1019 Scott Adsms, Inc./Dist. by Andrews MoMeel

HEY, WHO
LEFT THIS THING
UNPLUGGED?




Why Negative Emissions?



2100 WARMING PROJECTIONS ggggggg

Emissions and expected warming based on pledges and current policies Tracker
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Global CO; emissions (Gt CO; /year)
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Global CO; emissions (Gt CO3 /year)
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Carbon Cycle and Keeling Curve



Global Carbon Cycle
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How Much CO, in the Atmosphere?



How Much CO, in the Atmosphere?

 Atmospheric pressure P = 101 kPa

e Mass of atmosphere M = Px(4mntR?)/g
e 101 kPa x (471(6.4 x 106 m2)2)/(9.8 N / kg) = 5.3 x 106 Gt

* GMW of atmosphere 78% O,, 21% N,, 1% Ar - 29 g
per mole

e Atmosphere contains 1.83 x 10%° moles

* Currently CO, at 400 ppm = 7.31 x 10'®* moles = 3,220
Gt CO,

* Pre-industrial CO, at 280 ppm 2,250 Gt CO,

* 970 Gt CO, emitted in atmosphere since
industrialization



Global Carbon Cycle Modification
Direct Air Capture
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Direct air capture is one possible carbon dioxide
removal technology.

How many cubic meters of the atmosphere
must be processed to remove one gigatonne of
carbon?



Volume of atmosphere for 1 GtC

* Density of air at sea level = 1.225 kg/m?3

* One moleofair=29¢
e soairis 42.2 moles/m3 or 2.54 x 10> molecules/m?3

* CO, concentration 400 ppm
e S0 1.02 x 10%? CO, molecules/m3=0.743 g CO,/m3=0.203 g
C/m3
e 1 Gt =10° tonne = 10?2 kg =10 g
e S01GtCin 4.93 x 101> /m3 of air

* This volume is equal to area x thickness of 7,000 km x
7,000 km x 102 m

* An area of 7,000 km x 7,000 km is approximately the
area of Russia, Canada, China, and United States



Global Carbon Cycle Modification

Biomass Energy Carbon Capture Storage
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The annual variation shown in the insert is
attributed to plant growth and decay.

How many gigatonnes of CO, do plants absorb
and release in one year?

0000000000000000
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How many gigatonnes of CO, do plants absorb
and release in one year?

* Peak to peak variation in global average CO,
concentration is approximately 4 ppm

* Currently CO, at about 400 ppm = 3,125 Gt CO,

* 4 ppm thenis 31.2 Gt CO,

e Slope is approximately 2.3 ppm per year, but 25%
of emissions are absorbed by the ocean, 28% by
plants, and 46% stays in the atmosphere.



Global Carbon Cycle Modification
Afforestation/Reforestation

Atmosphere
597 +1656
F s r s
596 60
respi on
Weathering | ‘ change oo
— 1 \_\_\‘ 706 70 2242 20
Vegetatign
o, soil & deld L
2300 +l£lll—l-1£|"_-~ B/._\
| - . v ¥ —

Intermediate
& deep ocean

35,100  +100

Reservaoir sizes in GtC .
Surface sed t
fluxes in GtClyr IE{] © men

Black numbers pre-industrial steady state. Red numbers additions due to human activity.




Global Carbon Cycle Modification
Enhanced Weathering
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Global Carbon Cycle Modification
Ocean Fertilization
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Global Carbon Cycle Modification
Ocean Upwelling/Downwelling
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Global Carbon Cycle

natural and anthropogenic

e Gross Primary Production (GPP) of plants material removes
119.6 GtC per year and replaces 120.[0] GtC per year

e Earth is becoming greener

 Atmosphere interchange with ocean removes 92.2 GtC per year
and replaces 90 GtC per year

* The oceans are becoming more acidic
e Weathering of silicate rock removes 0.2 GtC per year

* Soils sequester 2.6 GtC per year, but land use change replaces
1.6 Gt C per year

e Fossil fuel combustion places 6.4 GtC per year in the
atmosphere

* Imbalance between removal from atmosphere, 215.0 GtC per
year, and replacement to atmosphere, 218.2 GtC per year,
results in increase of CO, in atmosphere.

* About one half of CO, from combustion ends up in the oceans
and about one half in the atmosphere



How Much CO, Must Be Removed?

* Current CO, concentration ~400 ppm

* To return to 350 ppm, ~350 GtCO, = 100 GtC must
be removed

* Hansen et al., Target atmospheric CO,: Where should
humanity aim? Atmos. Sci. J. 2(2008)217

* To return to 280 ppm, ~840 GtCO, = 230 GtC must
be removed

e 280 ppm is pre-industrial level



How Much Is a Gigatonne of Carbon?

In 2013 U.S. émissions were equivaIeIW4'GtCL.qu_Igziemissions 8.96 GtC
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Removal of CO, from Atmosphere



Carbon Management Options

* Decrease and eliminate fossil fuel
consumption

* Increase absorption on land by enhanced
weathering

* Increase absorption in ocean by promoting
biological activity

* Increase absorption on land by promoting
biological activity

e Decrease land use change
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Enhanced Weathering



Crushed Minerals Spread on Land




Enhanced Weathering

Silicate rocks absorb CO, allowing
eventual formation of carbonites.

Typical mineral reactions

(educts = ions and silica in solution, secondary minerals = precipitation reactions in the ocean)

Calcium carbonate (not a silicate)
CaCO, + CO, + H,0 = Ca?" + 2HCO, = CaCO,l + CO,ft + H,O
(No net=sink of ‘consumed’ atmospheric CO,)

Olivine (silicate)
Mg,SiO, + 4C0O, + 4H,0 = 2Mg?* + 4HCO, + H,SiO, = 2MgCO,{ + Si0, 4 + 2C0O,1t + 4H,0
(Net-sink for 50% of ‘consumed’ atmospheric CO,)

Albite (silicate)
2NaAlSi,O4 + 2C0, + 11H,0 = AlL,Si,0,(0H), + 2Na* + 2HCO, + 4H,Si0, = 2Na' +2HCO," + 4510, + 8H,0

(Net-sink for 100% of ‘consumed’ atmospheric CO,)

Theoretical limit for CO, removal by
olivine is 1.25 kg of CO, per kg of olivine.



Land Use Change
See Net Zero Emissions lecture 3



Removal of CO, from Atmosphere
Afforestation and Reforestation
See Net zero emissions lectures 3 and 4



Removal of CO, from Atmosphere
Ocean Surface Fertilization



lIron Hypothesis
John Martin, Nature 331(1988)341

“Give me a half tanker of iron, and | will give you an ice age.”

Low phytoplankton populations indicated by purple shaded areas on
map despite adequate sunlight and nutrients.



Ocean Fertilization Experiment Sites

“Small-scale open ocean experiments (red dots) have shown that iron
additions do indeed result in phytoplankton blooms, thereby drawing
carbon dioxide out of the atmosphere and into the ocean.”



Ehe New JJork Cimes

October 18, 2012
A Rogue Climate Experiment Outrages Scientists

“A California businessman chartered a fishing boat in July,
loaded it with 100 tons of iron dust and cruised through Pacific
waters off western Canada, spewing his cargo into the sea in an
ecological experiment that has outraged scientists and
government officials.”



Proceedings of the
National Academy of Sciences
of the United States of America

January 22, 2020

Microbial feedbacks optimize ocean iron
availability



Schematic of the “ligand—iron—microbe”
feedback

external
source

scavenging/
precipitation




Schematic of the idealized three-box
ocean biogeochemistry model.
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Significance of Global and Local Feedback Loops

Marine microbe growth is limited by iron over about half of the
global ocean surface. Dissolved iron is quickly lost from the ocean,
but its availability to marine microbes may be enhanced by binding
with organic molecules which, in turn, are produced by microbes. We
hypothesize this forms a reinforcing cycle between biological activity
and iron cycling that locally matches the availability of iron and other
nutrients, leading to global-scale resource colimitation between
macronutrients and micronutrients, and maximizing biological
productivity. Idealized models support this hypothesis, depending on
the specific relationships between microbial sources and sinks of
organic molecules. An evolutionary selection may have occurred
which optimizes these characteristics, resulting in “just enough” iron
in the ocean.



Removal of CO, from Atmosphere

Carbon Capture and Sequestration
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Large Scale CCS Sites (2019)
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APPLICATIONS
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CO:z CAPTURE AND STORAGE CAPACITY PER YEAR (Mtpa)
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s Gigatonne CO, Storage Possible?

* |PCC pathways model up to 1,200 Gt CO, storage by 2100

« 2019 25 Mt CO, sequestered from power and industry
« 2019 38 Mt CO, sequestration capacity

 |EA forecast 30-60 storage sites per year to 2050

« 350 gas and oll fields were developed annually in the
peak development period (2000-2010)

« 20% of avallable rigs could drill storage sites

* |EA forecast 2.3 GtCO, per year required until 2060 —
double the rate of oil and gas industry in last century



Successtul Sequestration of CO,
The Sleipner North Sea Gas Field



Location of Sleipner Gas Field




Schematic of Sleipner Platforms,
Production and Disposal
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CO2 Injection Well in "Utsira"
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The Sleipner field — CO2 Treatment and Injection

StatoilHydro
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Cumulative CQO, injection to date
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Development of CO, Plume

2001-1994 2004-1994 2006-19594 2008-1994 2010-1994

Seismic time-lapse monitoring shows that CO, stays in place in the Utsira
Fm at Sleipner and gives a detailed description of where the CO, is

_ M,
Furre & Eiken, 2012 *li.- Statoil




The Illinois Basin - Decatur Project
Midwest Geological Sequestration Consortium

CO, Sequestration Demonstration
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lllinois Basin —
Decatur Project
Scope

A collaboration of the Midwest
Geological Sequestration
Consortium, the Archer Daniels
Midland Company (ADM),
Schlumberger Carbon Services,
and other subcontractors

to inject | million metric tons
of anthropogenic carbon
dioxide at a depth of 7,000 +/-
ft (2,000 +/- m) to test
geological carbon sequestration
in a saline reservoir at a site in
Decatur, IL



lllinois Basin
Pennsylvanian coal seams Strahg ra phl C

Column
New Albany Shale
/ Mount Simon Storage
back-up seals Capacity:
11 (E=0.4%) to 150 (E=5.5%) billior
metric tons
Maquoketa Shale ‘
St. Peter Sandstone ‘
Eau Claire Shale |Seal

Mt. Simon Sandstone | reservoir




lllinois Basin —

Decatur Project Site
(on ADM industrial site)

A Dehydration/ compression
facility location

B Pipeline route (1.9 km)
C Injection well site

D Verification/ monitoring
well site

E Geophone well




Operational Injection:
|7 November 201 |

* IBDP fully operational 24/7

* IBDP is the first | million
tonne carbon capture and
storage project from a biofuel

facility in the US

* Injection through November

2014

* Intensive post-injection
monitoring under MGSC
through November 2017

Cumulative Injection
(10 November2014):
984,000 tonnes



IBDP Modeled Plume
Configuration

January 2014
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51. No No-flow Boundaries
from Schlumberger Carbon Services
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Microseismic Cluster Activity:
Cluster Locations in Relation to Surface Features

Moment Magnitude
Dec 15, 2011 — Dec 31, 2014
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Microseismic Locations

| @ Dec 15, 2011 —Nov 30, 2014

 Dec1, 2014 —Dec 31, 2014
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Y-axis
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Microseismic
Cluster
Activity:
Relationship
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Variety of Carbon Capture Applications
Examples from U.S. Projects



Some U.S. Carbon Capture Projects

Project

Location

onstream

Sector

Century Plant

Texas, United States

O perating since
2010

Industry, Matural Gas
Processing

Terrell Matural Gas Processing Plant
(formerly Val Verde)

Texas, United States

O perating since
1972

Industry, Matural Gas
Processing

|Petra Nova Carbon Capture

Texas, United States

Operating since
2017

Power, Coal Power
Generation

Air Products Steam Methane Reformer

Texas, United States

O perating since

Industry, Hydrogen

2013 Production
Enid Fertilizer Oklahoma, United Statﬂﬂperatmg Sines Indu_r.trl,r{ Ziansl
1982 (ammonia)

ICnﬂewille Gasification Plant

Kansas, United States

Operating since

Industry, Chemicals

2013 ammonia)
inois Industrial Carl Capt d Operati ince Industry, Refini
inois Industrial Carbon Capture an llinois. United States erating sinc n. ustry, Refining
Storage P017 (bicfuels)
. i i Industry, Natural Gas
Shute Creek Gas Processing Plant Wyoming, United States Ll== ol rl'r
1986 Processing

Lost Cabin Gas Plant

Whyoming, United States

Operating since
2013

Industry, Matural Gas
Processing

Great Plains Synfuel Plant and Weyburn-
Il'."lidale

North Dakota, United
States & Saskatchewan,

iCanada

O perating since

2000

Industry, Refining
(SNG)

Natural gas processing
Fertilizer production

Coal power plant

Syngas plant




Policy Incentives for CCUS - 45Q tax credits

Threshold by Facility Type (ktCO.,/y) Credit in 2026
Power Plant Industrial Facility | Direct Air Capture (/)
Dedicated Storage 500 100 100 50
EOR 500 100 100 35
Utilization 25 25 25 35

Source: McCoy, 2018

Credit available to qualified facilities for 12 year period
Defines qualified Carbon Oxides (CO or CO,)

Measured at point of capture and verified at the point of disposal/injection/use

Qualified facilities:

* 1) Construction must begin by Jan 1, 2024;
» 2) Original planning and design includes carbon capture equipment

* Credit can be claimed by owner of capture equipment or transferred to
disposal/use entity

energy.gov/fe



CCS Power Plant Projects



Boundary Dam Integrated Carbon Capture
and Storage Demonstration Project



Boundary Dam Integrated Carbon Capture

and Storage Demonstration Project

by SoskPower | by Partnars

o (1.5 trucks,/day]
|

from
5 Turbine /
Spill Cantainment

ol

Carbon Capture Utilization and Storage Process

Saline Sandstane 4 ,

\_ Formation _—/




SaskPower Boundary Dam
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Petra Nova



-

i

| BUSINESS & TECHNOLOGY FOR THE GLOBAL GEMERATION INDUSTIY SINCE 1882
| “." =ba L* T [
v . B 4 % Vol. 151 = Na. B = August 2017
) -

b F - . - "
t"ﬁﬂlﬂgﬂ_t}ﬂﬂ. WaterSymart Grd, and
CHEGen Award Winners Revealed
Cal s ﬁ:l Hisw. Prie-.
Affects Prospets™
Micsogridts: 0! d Cancept;
Mlew Enthusiasm

AEE@un
IuaElligrnc=




& - ! . w .
- s "-H - oo

Achieved Commercial Operation on December
29, 2016 on time and on budget

A total of 1,000,000 short tons of CO2
captured in October 2017




NRG Energy, Inc. W.A. Parish Power Plant

-~
S e i T i N i~ T

Unit 2
1958

WS petra Nova ==

: 2013 Bl s
I T g T O
: i i [ i J l _._,_J__r—*"

4 ;ﬁT"_ i g7 e
= = === Unit5 Unit6 g  Unit7

oy e
e
i

=

1978 - 1980

e
: e -

=,

Coal Generation Unit :c.a. 2,500 MW  (Unit 5-8)

Gas generation Unit : c.a. 1,200 MW (Unit 1-4, Unit 21(diesel) *, Petra Nova) *Starter uni



Carbon Capture System Site Layout

Cogeneration
[steam & power)

Absorber

*  Flue Duct — Transports flue gas from Unit 8
to Petra Nova

* Quencher - 50, polishing scrubber and

CO, Pipeline flue gas cooler

*  Absorber— Amine solvent captures the

C0, molecules - remaining flue gas goes
out absorber stack

* Regenerator —Steam is introduced to
separate the CO, from the amine solvent,
CO, exits the top of the regenerator,
solvent is recirculated to either the
absorber or filtering process

Compressor

Quencher
* Compressor—compresses the CO, to up to

1,900 psi

* (O, Pipeline —transports the CO, to the

TCV Pipeline
Flue Duct
* Cogeneration — provides steam and power

to the CCS facility

oration All Rights Reserved. 2018.02.14 10



Levelized Cost of CO, Capture
at Coal Fired Power Plants
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FIGURE 8 LEVELISED COST OF CO: CAPTURE FOR LARGE SCALE POST-COMBUSTION
FACILITES AT COAL FIRED POWER PLANTS, INCLUDING PREVIOUSLY STUDIED FACILITIES"



Comparison of the Cost of New
Electrical Generation in U.S.



Levelized Total System Cost of
New Generation Resources, 2023
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Capital Cost of
New Generation Resources, 2023
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Total System Cost Capitol Cost Comparison of

New Generation Resources, 2023
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Carbon Capture at Hydrogen Production Facility



Port Arthur TX SMR with CCUS
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Pre-Combustion Capture Project
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Che New Nork Times
July 5, 2016

Piles of Dirty Secrets Behind a Model
~ ‘Clean Coal” Project

“Kemper coal plant [Kemper County, MS] is more than two years behind schedule and more
than $4 billion over its initial budget, $2.4 billion, and it is still not operational.



THE WALL STREET JOURNAL.

May 4, 2016

Southern’s Clean-Coal Woes Mount

Kemper facility in Mississippi now faces SEC
investigation on top of skyrocketing costs




Che New Hork Times
ROOM for DEBATE

Clean Coal, or a Dirty Shame?

e Arguing that we can handle the climate challenge with
renewables alone is a very risky proposition. Develop a
portfolio of low-carbon energy options.

 We cannot afford further investment in a pipe dream that
distracts us from developing real solutions and technologies
for climate change.

* Nations are still building coal plants and the U.S. is still
building gas plants. Unless we do something, these plants
will put billions of tons of pollution into the air.

* There are no requirements for how long the carbon dioxide
must remain below ground, who owns it, who is liable for
leakage.


http://www.nytimes.com/roomfordebate
http://www.nytimes.com/roomfordebate

Bloomberg
Business

February 5, 2015
FutureGen’s Demise Shows Carbon

Capture for Coal Faces Woes

. Total capltal cost is ~$1.65 billion ($ 1 billion from DOE
and the rest is from the private sector); Construction to
start in 2014 and operations to begin in 2017
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CAPTURING CARBON FROM ABBOTT POWER PLANT

PHASE 1 COMPLETED & PHASE 2 PROPOSAL IN EVALUATION BY DOE/NETL FOR 15 MWe
CAPTURE FACILITY

i)
D .

L
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I WO W 17T

Oili
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.
O

Layout of Linde’s 15 MWe Carbon Capture Plant at UIUC Linde 1.5 MWe Capture Plant at
National Carbon Capture Center

« Strong lllinois team led by University: University of lllinois, Linde, BASF, Affiliated Engineers,

ACS
* Vigorously Tested, Proven, and Matured Carbon Capture Technology from Linde/BASF

* Phase 1 (Project Definition and {Pre-FEED)
* Phase 2 (build & test) is a $75 Million project; Phase 2 proposal submitted March 31, 2016

» Syndicated public / private partnership for Phase Il with $58.5 Million from DOE/NETL and

the remaining from the University and private sector companies
* Phase 3 plans by University to set up a CO2 utilization Research Center
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CCS Summary

* Sequestration in saline aquifers demonstrated
e Techniques exist to monitor CO,
 Various capture technologies also exist

e SaskPower and Petra Nova demonstration projects appear
successful

e FutureGen 2.0 was cancelled
 Kemper County project a failure

e Capture technology successful in other applications, e.g.
hydrogen production, fertilizer production with use in EOR

e Wide-spread adoption of CCS appears possible
e But, is the gigatonne scale possible?
e But, should there be continued use of fossil fuels?



Removal of CO, from Atmosphere
Direct Air Capture



Schematic Representation of 1Mt CO,
per year Direct Air Capture Facility

AE— To storage Air contactor with
¢ frontal area of

Chemical plant with ;
10,000 m

regenerator and compressor

250 m region of



Post-Combustion Capture

Direct Air Capture

DOE/NETL Study APS Study
CO, captured tons per 2,790,000 1,000,000
year
Total capital cost M$ $500 $2,200
Capital cost $ per ton $22 $260
CO, captured
Operating cost $ per $40 $170
ton CO, captured
Total cost $ per ton $62 $430
CO, captured
Total cost $ per ton $80 $620

CO, avoided




Start-Up Companies in Direct Air Capture

@/ Carbon Englneerlng

kilimanjaro A

energy

globalthermostat



Process for Capturing CO, from the Atmosphere
D. W. Keith et al., Joule 2(2018)1573

Atmospheric Air
1t-CO,

Nat Gas Elec Pure CO,
Direct Air -
8.81GJ 0kWh (1.3-1.5t) Fuels or
or Capture > _
5.25GJ) 366 kWh Sequestration

Levelized Cost
94-232 $USD/t-CO,

}

Process simulation & EPC cost estimate

| |_i: \

k

4 1I
¥
1

%5 Hmnfﬁ I8l m{}ﬂj S

Pilot plant performance Commercial scale reference
data design



Carbon Engineering Pilot Plant Operation in 2015




Carbon Engineering Commercial Scale Design

Y
.uuunbl“"" i

i il




Carbon Engineering Chemistry

KO
Calciner (3]

AirIn
CaO, + (O
178.3 k3fmol

Air Contactor (1) Pellet Reactor (2)
€Oz + 2KOH 2KOH g, + Callyy,
Hz0m + K005 50 K003, + Ca(OH) 2,
-85 .8 kl/mol -5.8 k1/mol
Slaker (4)
Ca(OH) s o

Ca(OH) s,
-63.9 KJ/modl

Kol Oz

co,



Carbon Engineering Process Schematic

CaC0; Makeup 531t/h HO
40°C
CaCo, Seed 341t/h 151 bar
4.5 t/h CaCO, + . 171t
Separation W Compressor 97.12% CO,
ater 1.36%
—¢ 0.3 MW Knockout Dzzumw ﬂ_m%g:
21°C — 0.01% H,0
389,000 th 6.0 t/h o -~ "~ |
2.00 (€' “ >@ Steam
1.10 [OH]
CaCO; Seed Superheat
0.45 [CO,%] From 3Calciner
3.4 th CaCO " 567 th
F
< ? Fliil.;if Pellet 0.14 [K] 454'C
. " Reactor A 201 t/h
Fines to disposal 21.5 t/h CaCO, 3.4 MW gg {ggle] 82.57% CO
X K L 2
| 1.16% O,
Fines to Calciner Q 1.28% N,
300°C 14.99% H,0
B l g x4 306 th
h > - 300 Steam Slaker 300 th CaCo,
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21°C Cooling 24.7 th CaO ol Preheat 1
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X S [ . " P K A A . 674°C
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23.00% O, QL ' i?;&F’A Calciner
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—h E— |
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Carbon Engineering Process Simplified

STEP 1

Start with a solution, such
as sodium hydroxide, that
reacts with the CO. in the
air and turns i s0lid,

- = Sodium Hydroxide

Air In Air Qut

AIR CONTACTOR

BYPRODUCT

The pure GO, {plus GO, produced
STEP 3 from burning natural gas to heat
Mix the ash left in the the kiln) is captured. It can then be
kiln with water to used for other purposes, like
ragenarate the sodiom getting oil out of the ground.
hydroxide solution,

co,
{captured in pure form)
' Water

Ash

Matural Gas

Carbonate Solids LN

STEP 2

Fut the solids in a 200 degrea Celsius
kiln, where they break down and
generate a pure stream of CO,.



H. Rickover (1953)
“the academic” versus “the practica

|II

An academic reactor or reactor plant almost always has the following
basic characteristics: (1) It is simple. (2) It is small. (3) It 1is
cheap. (4) It is light. (5) It can be built very quickly. (6) It 1is
very flexible 1in purpose ("omnibus reactor"). (7) Very little develop-
ment is required. It will use mostly “off-the-shelf” components.

(8) The reactor is in the study phase. It is not being built now.

On the other hand, a practical reactor plant can be distinguished by the
following characteristics: (1) It is being bulilt now. (2) It is behind
schedule. (3) It is requiring an immense amount of development on
apparently trivial items. Corrosion, in particular, is a problem.

(4) It is very expensive. (5) It takes a long time to build because of
the engineering development problems. (6) It i1s large. (7) It is

heavy. (8) It is complicated.



Carbon Engineering Cost Estimates

Scenario

A: Baseline: gas fired — 15 MPa COs output
B: Baseline with N*" plant financials

C: Gas and electricity input — 15 MPa
CO2 ocutput

D: Gas and electricity input — 0.1 MPa CO-:
output assuming zero cost Oy

Capital $ per
t-COaz/year

1,144
F23
&4

&0

O&M" ($/1t-CO=2)

42
30
28

23

Levelized™
($/t-COo)

CRF~
7.5%
168

124
113-124

F4-F7

Capital cost 1 MtCO, per year 15t plant $1,127 M, Nt plant $780 M
Levelized cost $94 - $232 per tCO,

12.5%
232

170
152-163

128—-130



Negative Emissions Summary

e Carbon burden in the atmosphere has increased by 230 Gt
compared to pre-industrial times

e For comparison global coal production in 2015 was
approximately 8 Gt.

 Enhanced weathering requires massive mining operations.

e Afforestation and reforestation in tropics could sequester
CO,, but significant land required.

* Ocean-based removal experiments have had some success.

e Bioenergy plus carbon capture and sequestration requires
CCS, which has had limited success.

* Direct air capture appears feasible.

e Currently, there is no policy or economic incentive to
remove carbon from the atmosphere.



Net Zero Emissions Summary
[separate document]
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